Pierre Seck, ${ }^{1 *}$ David Thomae, ${ }^{2}$ Gilbert Kirsch ${ }^{2 *}$
${ }^{1}$ Laboratoire de Chimie, Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg,
162a, avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
E-mail : pierre.seck@uni.lu
${ }^{2}$ Laboratoire d'Ingénierie Moléculaire et Biochimie Pharmacologique, Institut Jean Barriol, FR CNRS 2843, 1 Boulevard Arago, 57070 METZ, France.

Received November 13, 2007

An efficient two respectively three steps procedure for the synthesis of cycloalkyl[b]thieno[3,2-e]pyridine amines was developed and in general good to very good yields were obtained.
J. Heterocyclic Chem., 45, 853 (2008).

INTRODUCTION

Alzheimer's disease is a form of dementia of older people that looks to become a major problem in the coming decade [1]. One possible treatment is to inhibit acetylcholinesterase to maintain as long as possible the neurotransmission by acetylcholine which is hindered by the formation of β amyloïd plaques. The first acetylcholinesterase inhibitor used in this context was Tacrine (I) sold under the name of COGNEX® (Figure 1). The hydroxyl derivative of Tacrine is Velnacrine (II). In order to investigate the biological effects of structural modifi-

| Tacrine $\mathrm{R}=\mathrm{H}$ Il Velnacrine $\mathrm{R}=\mathrm{OH}$

IV

$$
\begin{array}{llll}
n=0,1,2 & R=H & R_{2}=A r & R_{1}=H \\
n=1 & R=O H & R_{2}=A r & R_{1}=H
\end{array}
$$

$n=1 \quad \mathrm{R}=\mathrm{H} \quad \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}$
$\mathrm{n}=1 \quad \mathrm{R}=\mathrm{H} \quad-\mathrm{R}_{1}-\mathrm{R}_{2^{-}}=\left(\mathrm{CH}_{2}\right)_{4}$
$n=0,1,2 \quad R=H \quad R_{1}=H \quad R_{2}=p-\mathrm{CH}_{3} O-P h$
$n=0,1,2 \quad R=H \quad R_{1}=H \quad R_{2}=p-C l-P h$
$\mathrm{n}=1 \quad \mathrm{R}=\mathrm{OH} \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}$
$\mathrm{n}=1 \quad \mathrm{R}=\mathrm{OH}-\mathrm{R}_{1}-\mathrm{R}_{2^{-}}=\left(\mathrm{CH}_{2}\right)_{4}$
cations of Tacrine, we wanted to synthesize a series of thiophene analogues, since it is widely recognized that thiophene is a bioisostere of benzene. As few analogues based on the thieno[2,3-b]quinoline (III) and the thieno-[3,2-b]quinoline (IV) moieties have been described [2], we have chosen to prepare parallel to the synthesis of

Scheme I

Reagents and conditions: i cyclohexane-1,3-dione, p-toluenesulfonic acid, toluene, reflux, ii CuCl , base, DMF , reflux, iii AlCl_{3}, cyclohexane-1,3-dione, $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}_{2}$, reflux, iv AlCl_{3}, cyclohexane-1,3-dione, $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}_{2}$, reflux, $\mathbf{v} \mathrm{LiAlH}_{4}$, THF, reflux.
substituted cycloalkyl[b]thieno[2,3-e]pyridine amines (V) [3], the hitherto unknown substituted cycloalkyl[b]thieno-[3,2-e]pyridine amines (VI) (Figure 1) The proposed synthesis is shown in Scheme I.

RESULTS AND DISCUSSION

The synthesis started from substituted 2-amino-3thiophenecarbonitriles $\mathbf{1}$ which were prepared in one or two steps from the corresponding ketones via a Gewald reaction [4] (Scheme II).

The first approach to the Tacrine derivatives $\mathbf{3}$ was made by applying a method developed by Tabarrini et al [5] (Scheme I/method A). In the first step, thiophenes 1 were condensed with cyclohexan-1,3-dione in refluxing toluene in the presence of p-toluenesulfonic acid to give the corresponding enamines 2 in various yields. These enamines were cyclized in the presence of cuprous chloride and either potassium carbonate or sodium methanolate in refluxing DMF to give the ketones 3 . The latter were easily reduced by lithium aluminium hydride to the thiophene analogues of Velnacrine 4.

Scheme II

WAY A

WAY B

Reagents and conditions: i morpholine, ethanol, reflux, ii $\mathrm{CH}_{3} \mathrm{COOH} /$ $\mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{Bz}$, reflux, iii morpholine, DMF, RT or reflux.

In a second approach using Friedländer conditions [6] (Scheme I/method B), ketones $\mathbf{3}$ were obtained in comparable yields than by method A. These conditions allowed us to conduct the direct condensation of monocyclanones as well as 1,3-cyclanediones. In this way, the preparation of Tacrine analogues 5 was possible by only two or three steps and the introduction of a range of ring sizes could also be achieved.

In conclusion substituted 2-amino-3-thiopohenecarbonitriles have been synthesized in only one or two steps.

The Friedländer reaction allowed by another single step the very rapid access to the target molecules with good yields. Biological evaluation of the synthesized compounds, using Ellman's tests on acetylcholinesterase inhibition [7] is underway.

EXPERIMENTAL

Melting points were determined on a Stuart SMP3 apparatus and are uncorrected. IR spectra were recorded neat from 4400 to $600 \mathrm{~cm}^{-1}$ on an Perkin Elmer FT-IR Baragon 1000PC equipped with a Graseby-Specac golden gate and treated with the Spectrum (Perkin-Elmer) software version $5.3 .1 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC 250 MHz spectrometer in CDCl_{3} if not stated otherwise. The coupling constants are in Hz . Ms spectra were recorded on an Agilent Technologies GC-MS instrument equipped with a 7683 injector, 6890 N gas chromatograph and a 5973 mass selective detector. The mass spectrometer was operated in EI mode at 70 eV and ms spectra were recorded from $\mathrm{m} / \mathrm{z} 50$ to 650 .

General procedure to obtain the substituted 2-Amino-3thiophenecarbonitriles 1(a-d) (Fig. 2).

WAY A (GEWALD reaction). 0.10 mol (1 equiv.) of ketone and 0.10 mol of malonic acid dinitrile were dissolved in 150 mL absolute ethanol. 0.11 mol sulfur powder and 10 mL morpholine were added. The mixture was heated at reflux with good stirring. After approx. 2 hours, it was cooled to RT and poured into 300 mL ice-water. The precipitation was filtered of, washed with cold water and dried. It was purified either by recrystallization in isopropanol or by silica gel column chromatography using dichloromethane as eluent

WAY B. First step: 0.10 mol (1 equiv.) of ketone and 0.10 mol of malonic acid dinitrile were dissolved in 100 mL benzene. 0.10 mol ammonium acetate and 0.30 mol acetic acid were added and the reaction mixture was refluxed up to 6 hours in a Dean-Stark apparatus. After cooling to RT, the mixture was diluted with 100 mL water and the acetic acid was neutralized with a 10% solution of sodium bicarbonate. The organic layer was separated, dried on anhydrous sodium sulfite, filtered and the solvent was evaporated to give the product which was directly used in the next step.

Second step: (GEWALD reaction). 25 mmol of the product obtained by step 1 (substituted 1,1-dicyanoprop-1-ene) were dissolved in 60 mL DMF. 25 mmol of sulfur powder were added as well as some droplets of morpholine. After a very short heating (less than 10 minutes), up to $120^{\circ} \mathrm{C}$, the reaction mixture was cooled to RT then poured into ice-water. The precipitation was collected by filtration, washed with cold water, dried and purified either by recrystallization in isopropyl alcohol or by silica gel column chromatography using a mixture of dichloromethane/ethyl acetate (95:5) as eluent.
2-Amino-4,5-dimethyl-3-thiophencarbonitrile (1a). Yield: 72%; red-brownish needles; mp $138^{\circ} \mathrm{C}$ (isopropanol); Lit: mp: $141-142^{\circ} \mathrm{C}$ [8]; ir: 3432 and $3217\left(\mathrm{NH}_{2}\right), 2188(\mathrm{CN}), 1606$ $\left(\mathrm{NH}_{2}\right), 1377\left(\mathrm{CH}_{3}\right), 1305\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 2.06$ (s, 3H, $\left.\mathrm{CH}_{3}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 12.39$, $12.76,90.56,115.94,117.17,129.58,159.17 ; \mathrm{ms}: \mathrm{m} / \mathrm{z}(\mathrm{M})^{+}=$ $\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)^{+}=152(100 \%)$.

2-Amino-4,5,6,7-tetrahydrobenzo $[b]$-3-thiophenecarbonitrile (1b) Yield: 95\%; ocher needles; mp: $144^{\circ} \mathrm{C}$
(isopropanol); Lit: mp: 147-148 ${ }^{\circ} \mathrm{C}$ [4b] ; ir: 3443 and 3304 $\left(\mathrm{NH}_{2}\right), 2195(\mathrm{CN}), 1614\left(\mathrm{NH}_{2}\right), 1443$ and $1431\left(\mathrm{CH}_{2}\right), 1330$ $\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.78\left(\mathrm{t}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 4.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, $2.49\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 22.10,23.34,23.72,24.10$, $88.45,115.59,120.50,132.27,160.15 ; \mathrm{ms}: \mathrm{m} / \mathrm{z}(\mathrm{M})^{+}=$ $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}\right)^{+}=178(100 \%)$.

2-Amino-4-(4-methoxyphenyl)-3-thiophenecarbonitrile (1c). Yield: 89%; ocher needles; mp $161^{\circ} \mathrm{C}$ (dichloromethane/ ethylacetate 95:5); Lit: mp: 141-142 [9] ir: 3448 and 3207 $\left(\mathrm{NH}_{2}\right), 2193(\mathrm{CN}), 1607\left(\mathrm{NH}_{2}\right), 1248$ and $1173\left(\mathrm{OCH}_{3}\right.$ on the phenyl), 736 (disubstituted phenyl); ${ }^{1} \mathrm{H}$ nmr: $\delta 3.86$ (s, 3 H , OCH_{3}), $4.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$, $\mathrm{J}=8.5$), 7.58 (d, $2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}, \mathrm{J}=8.5$); ${ }^{13} \mathrm{C} \mathrm{nmr}: \delta 55.34,77.22$, 104.80, 114.18, 115.90, 126.83, 128.38, 139.74, 159.61, 163.23; $\mathrm{ms}: \mathrm{m} / \mathrm{z}(\mathrm{M})^{+}=\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ON}_{2} \mathrm{~S}\right)^{+}=230(100 \%)$.

2-Amino-4-(4-chlorophenyl)-3-thiophenecarbonitrile (1d). Yield: 90%; orange needles; $\mathrm{mp} 164^{\circ} \mathrm{C}$ (dichloromethane/ ethylacetate 95:5); ir: 3301 and $3201\left(\mathrm{NH}_{2}\right), 2216(\mathrm{CN}), 1642$ $\left(\mathrm{NH}_{2}\right), 815$ (disubstituted phenyl) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 5.40(\mathrm{~s}, 2 \mathrm{H}$, NH_{2}), 6.90 ($\mathrm{s}, \mathrm{H}, \mathrm{CH}$), 7.00 (d, Ph-H, J=8.5), 7.30 (d, 2H, Ph-H, $\mathrm{J}=8.5)$; ${ }^{13} \mathrm{C}$ nmr: $\delta 83.71,104.07,115.55,127.80,128.06$, 132.19, 134.52, 136.89, 165.15; ms : m/z (M) $)^{+}=\left(\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{SCl}\right)^{+}$ $=234(100 \%)$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{~S}: \mathrm{C}, 56.29 ; \mathrm{H}, 3.01$; N, 11.94. Found: C, 56.14; H, 3.09; N, 11.87.

General procedure to obtain substituted 2-[(3-Oxo-1-cyclohexen-1yl) amino]-3-thiophenecarbonitriles 2 (a-b).
$1^{\text {st }}$ Step of method A/Scheme I. A suspension of a substituted 2-amino-3-thiophencarbonitrile $\mathbf{1}$ (0.02 mol), cyclohexane-1,3dione (0.02 mol) and p-toluenesulfonic acid $(0.67 \mathrm{mmol})$ in dry toluene (20 mL) were refluxed for 4 h in an Dean-Stark apparatus. The reaction mixture was then chilled to $0^{\circ} \mathrm{C}$ and the crystallized product was collected by filtration, washed with cold toluene followed by cold cyclohexane, dried and recrystallized (ethanol/diethyl ether 1:1).

4,5-Dimethyl-2-[3-oxo-1-cyclohexen-1-yl)amino]-3-thiophenecarbonitrile (2a). Yield: 68\%; yellow-greenish needles; $\mathrm{mp} 211^{\circ} \mathrm{C}$ (ethanol/diethyl ether 1:1); ir: 3187 (NH), 2955 $\left(\mathrm{CH}_{3}\right), 2224(\mathrm{CN}), 1603(\mathrm{CO}), 1589(\mathrm{NH}), 1358\left(\mathrm{CH}_{3}\right), 1242$ (NH) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 2.05\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 2.16(\mathrm{~s}$, $\left.6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right), 2.38\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\right), 2.54\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CO}-\right)$, $5.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.96(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}-\mathrm{CO}-) ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta 12.50$, 12.86, 21.55, 28.75, 36.41, 103.34, 103.96, 114.10, 128.14, 130.93, 146.76, 160.67, 198.56; ms : m/z $(M)^{+}=\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ON}_{2} \mathrm{~S}\right)^{+}$ $=246$ (100\%). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 63.39 ; \mathrm{H}, 5.73$; N, 11.37. Found: C, 63.54; H, 5.55; N, 11.38.

2-[3-Oxo-1-cyclohexen-1-yl)amino]-4,5,6,7-tetrahydro-1-benzo[b]thiophen-3-carbonitrile (2b). Yield: 62\%; yellow needles; mp $200^{\circ} \mathrm{C}$ (ethanol/diethyl ether 1:1); ir: $3188(\mathrm{NH}), 2924$ $\left(\mathrm{CH}_{2}\right)_{4}, 2211(\mathrm{CN}), 1614(\mathrm{CO}), 1589(\mathrm{NH}), 1447\left(\mathrm{CH}_{2}\right)_{4}, 1247$ (NH) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 1.83\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.07\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 2.38\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\right), 2.58\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ CO-), $5.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6,92(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}-\mathrm{CO}-),{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 21.61$, 21.92, 22.26, 22.54, 25.44, 26.57, 36.47, 102.49, 102.69, 113.81, 131.54, 133.37, 147.77, 161.63, 198.83; $\mathrm{ms}: \mathrm{m} / \mathrm{z}(\mathrm{M})^{+}=$ $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ON}_{2} \mathrm{~S}\right)^{+}=272(100 \%)$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}$, 66.15 ; H, 5.92; N, 10.29. Found: C, 66.13; H, 5.87; N, 10.34.

General procedure to obtain the substituted amino-7,8dihydrothieno [2,3-b] quinolinones 3 (a-b).

$\mathbf{2}^{\text {nd }}$ Step of method A/Scheme I. Sodium methanolate or potassium carbonate (2.2 mmol) and cuprous chloride (10.4
mmol) were added to a solution of $\mathbf{2}(10.4 \mathrm{mmol})$ in dry DMF $(20 \mathrm{~mL})$ and the mixture was heated at $80-90^{\circ} \mathrm{C}$ for 4 h . After cooling, the reaction mixture was poured into ice-water (150 mL) containing sodium tartrate (10%). The obtained precipitate was filtered off and extracted several times with a mixture of methanol/ethyl acetate (1:1). The organic extracts were dried on anhydrous sodium sulphate, filtered and the solvent was evaporated to give a solid which was purified by silica gel column chromatography using a mixture of dichloromethane/ methanol ($9: 1$) as eluent.

4-Amino-2,3-dimethyl-7,8-dihydrothieno[2,3-b]quinolin$\mathbf{5 (6 H})$-one (3a). Yield: 63%; brownish needles; mp $204^{\circ} \mathrm{C}$ (dichloromethane/methanol 9:1); ir: 3410 and $3216\left(\mathrm{NH}_{2}\right), 2952$ and $2864\left(\mathrm{CH}_{3}\right), 1636(\mathrm{CO}), 1589\left(\mathrm{NH}_{2}\right), 1423$ and $1371\left(\mathrm{CH}_{3}\right)$, $1328\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.65$ ($\mathrm{s}, 1 \mathrm{H}$ of NH_{2} linked by hydrogen-bonding to CO), $2.09\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right) ; 2.39$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.67\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\right) ; 3.03$ ($\left.\mathrm{m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CO}-\right), 5.29$ (s, 1 H of NH_{2} linked by hydrogenbonding to CO); ${ }^{13} \mathrm{C}$ nmr: $\delta 13.30,14.74,21.41,29.67,39.91$, $112.55,122.20,125.30,129.55,152.64,161.17,161.79,202.36$; $\mathrm{ms}: \mathrm{m} / \mathrm{z}(\mathrm{M})^{+}=\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ON}_{2} \mathrm{~S}\right)^{+}=246$ (100\%). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 63.39$; H, 5.73; N, 11.37. Found: C, 63.41; H, 5.50; N, 11.38.

11-Amino-2,3,4,7,8,9-hexahydro[1]benzothieno[2,3-b]-quinolin- $\mathbf{1 0}(\mathbf{1 H})$-one (3b) Yield: 58\%; brown needles; mp $223^{\circ} \mathrm{C}$ (dichloromethane/methanol 9:1); ir: 3387 and 3217 $\left(\mathrm{NH}_{2}\right), 2941\left(\mathrm{CH}_{2}\right), 1636(\mathrm{CO}), 1587\left(\mathrm{NH}_{2}\right), 1426\left(\mathrm{CH}_{2}\right), 1311$ $\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.28\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right.$ linked by hydrogenbonding to CO$), 1.89\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.07\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}-\right), 2.66\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\right), 2.77\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CO}-\right), 3.02$ $\left(\mathrm{m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 5.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right.$ linked by hydrogen-bonding to CO); ${ }^{13} \mathrm{C} \mathrm{nmr}$: $21.04,21.66,22.26,22.54,25.44,26.57,39.95$, 107.88, 118.14, 127.37, 132.67, 152.74, 161.85, 162.62, 202.05; $\mathrm{ms}: \mathrm{m} / \mathrm{z}(\mathrm{M})^{+}=\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ON}_{2} \mathrm{~S}\right)^{+}=272(100 \%)$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 66.15 ; \mathrm{H}, 5.92$; N, 10.29. Found: C, 66.24; H, 5.83; N, 10.39.

General procedure to obtain the substituted amino-7,8dihydrothieno [2,3-b] quinolinols 4 (a-b) (Scheme I). A solution of $\mathrm{LiAlH}_{4}(1.6 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL})$ was added dropwise to a solution of $3(1 \mathrm{mmol})$ under argon atmosphere. After the addition, the reaction mixture was refluxed for 1 h , then quenched by 2 mL of $\mathrm{HCl} 10 \%$. The mixture was then made basic with $\mathrm{NaOH} 30 \%$ and extracted with ethylacetate $(3 \times 20$ mL). The combined organic layers were dried on anhydrous sodium sulfate, filtered and evaporated to give a solid, which was purified by silica gel column chromatography using a mixture of dichloromethane/methanol (9:1) as eluent.

4-Amino-2,3-dimethyl-5,6,7,8-tetrahydrothieno[2,3-b]-quinolin-5-ol (4a). Yield : 83\%; ocher crystalline powder; mp $182^{\circ} \mathrm{C}$ (dichloromethane/methanol 9:1); ir: 3507 and 3383 $\left(\mathrm{NH}_{2}\right), 3118(\mathrm{OH}), 2937$ and $2864\left(\mathrm{CH}_{3}\right), 1589\left(\mathrm{NH}_{2}\right), 1438$ and $1383\left(\mathrm{CH}_{3}\right), 1278\left(\mathrm{NH}_{2}\right), 1066(\mathrm{OH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 1.20(\mathrm{~m}$, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), $1.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{OH}\right), 2.13(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{OH}), 4.96\left(2 \mathrm{H}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta$ 13.09, 14.27, 17.74, 29.15, 32.83, 62.83, 113.24, 118.81, 124.67, 126.13, 149.34, 153.46, 158.67; ms: m/z (M) ${ }^{+}=\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ON}_{2} \mathrm{~S}\right)^{+}$ $=248(100 \%)$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 62.87$; H, 6.49; N, 11.28. Found: C, 63.02; H, 6.50; N, 11.18.

11-Amino-1,2,3,4,7,8,9,10-octahydro[1]benzothieno[2,3-b]-quinolin-10-ol (4b). Yield: 43\%; yellow-brown needles; mp $128^{\circ} \mathrm{C}$ (dichloromethane/methanol 9:1); ir: 3503 and 3380 $\left(\mathrm{NH}_{2}\right), 3115(\mathrm{OH}), 2928\left(\mathrm{CH}_{2}\right)_{4}, 1611\left(\mathrm{NH}_{2}\right), 1444\left(\mathrm{CH}_{2}\right)_{4}, 1304$
$\left(\mathrm{NH}_{2}\right), 1068(\mathrm{OH}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.72\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.27(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}_{2}$ linked by hydrogen-bonding to OH), $2.44(\mathrm{~m}, 6 \mathrm{H}$, $3 \times \mathrm{CH}_{2}$), $2.68\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 4.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{OH}), 5.16(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}_{2}$ linked by hydrogen-bonding to OH); ${ }^{13} \mathrm{C} \mathrm{nmr:} \delta 17.78$, 22.06, 22.17, 25.25, 25.89, 32.81, 33.22, 62.80, 113.25, 117.68, $129.39,133.37,149.28,153.51,159.23 ; \mathrm{ms}: \mathrm{m} / \mathrm{z}(\mathrm{M})^{+}=$ $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ON}_{2} \mathrm{~S}\right)^{+}=274(100 \%)$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}$, 65.66 ; H, 6.61; N, 10.21. Found: C, 65.83; H, 6.49; N, 10.36.

General procedure to obtain the substituted cycloalkyl[b]-thieno[3,2-e]pyridine amines 5 (a-d) by Friedländer reaction (method B /Scheme I). Aluminium chloride (3.4 mmol for monocyclanones and 6.8 mmol for cyclohexa-1,3-diones) was suspended in dry 1,2 -dichloroethane (10 mL per mmol of AlCl_{3}) at RT under argon. The corresponding thiophene $\mathbf{1}(2 \mathrm{mmol})$ and the ketone (1.7 mmol) were added and the reaction mixture was heated under reflux up to 18 h for a monocyclanone and up to 36 h for a cyclohexa-1,3-dione. When the reaction was completed (monitoring by TLC) a mixture of THF/water (2:1) was added at RT and sodium hydroxide was added until the solution became basic. After stirring for at least 30 minutes, the mixture was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried on anhydrous sodium sulfate; the solvents are evaporated to give a brownish solid which was purified by silica gel column chromatography using dichloromethane/methanol (9:1) as eluant.

4-Amino-2,3-dimethyl-5,6,7,8-tetrahydrothieno[2,3-b]quinoline (5a). Yield 95%; grey needles; mp $169^{\circ} \mathrm{C}$ (dichloromethane/methanol 9:1); ir: 3506 and $3301\left(\mathrm{NH}_{2}\right), 2922$ and 2857 $\left(\mathrm{CH}_{3}\right)$ and $\left(\mathrm{CH}_{2}\right), 1636\left(\mathrm{NH}_{2}\right), 1428\left(\mathrm{CH}_{3}\right), 1279\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ nmr: $\delta 1.89\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta 13.48$, $14.58,23.06,26.82,32.92,41.98,110.93,115.73,123.36$, 128.46, 146.77, 153.76, 157.97; ms: m/z $(\mathrm{M})^{+}=\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}\right)^{+}=$ 232 (100\%). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 67.20 ; \mathrm{H}, 6.94 ; \mathrm{N}$, 12.06. Found: C, $67.20 ; \mathrm{H}, 7.02$; N, 12.35 .

11-Amino-1,2,3,4,7,8,9,10-octahydro[1]benzothieno[2,3-b]quinoline (5b). Yield 92%; brown needles; mp $218^{\circ} \mathrm{C}$ (dichloromethane/methanol 9:1); ir: 3473 and $3361\left(\mathrm{NH}_{2}\right), 2924$ and 2845 $2\left(\mathrm{CH}_{2}\right)_{4}, 1609\left(\mathrm{NH}_{2}\right), 1431\left(\mathrm{CH}_{2}\right), 1277\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}: ~ \delta$ $1.90\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 22.86,22.97$, 23.06, 25.65, 26.81, 33.10, 43.47, 110.89, 117.93, 125.73, $131.79,132.57,146.64,153.92,158.87$; ms: m/z $(M)^{+}=$ $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}\right)^{+}=258$ (100\%). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}$, 69.73 ; H, 7.02 ; N, 10.84. Found: C, 69.58; H, 7.06; N, 10.90.

4-Amino-3-(4-methoxyphenyl)-6,7-dihydro-5H-cyclopenta-[b]thieno[3,2-e]pyridine ($\mathbf{5 c} / \mathbf{n}=\mathbf{0}$). Yield 83%; beige needles; $\mathrm{mp} 216^{\circ}$ (dichloromethane/methanol 9:1); ir: 3477 and 3368 $\left(\mathrm{NH}_{2}\right), 2951$ and $2832\left(\mathrm{CH}_{2}\right), 1610\left(\mathrm{NH}_{2}\right), 1455\left(\mathrm{CH}_{2}\right), 1175$ $\left(\mathrm{OCH}_{3}\right), 755$ (disubstituted phenyl); ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 2.20\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 2.75\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\right), 3.1\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{N}=\mathrm{C}-\mathrm{CH}_{2}-\right), 3.9$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.2\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.9(\mathrm{~s}, 1 \mathrm{H}$, thiophene proton), 7.0 (d, $2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{J}=8.5$), 7.4 (d, $2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{J}=8.5$); ${ }^{13} \mathrm{C} \mathrm{nmr:} \delta 22.90$, $26.75,34.36,55.35,113.56,113.93,115.67,116.20,119.39$, 129.67, 130.46, 134.37, 145.30, 159.45, 164.09; ms: $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}=\right.$ $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ON}_{2} \mathrm{~S}\right)^{+}=296$ (100\%). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}$, 68.89; H, 5.44; N, 9.45. Found: C, 68.74; H, 5.88; N, 9.50.

4-Amino-3-(4-methoxyphenyl)-5,6,7,8-tetrahydro[2,3-b]quinoline) (5c/n=1). Yield 85%; orange needles; mp $162^{\circ} \mathrm{C}$ (dichloromethane/methanol 9:1); ir: 3474 and $3331\left(\mathrm{NH}_{2}\right), 2926$ and $2863\left(\mathrm{CH}_{2}\right), 1630\left(\mathrm{NH}_{2}\right), 1441\left(\mathrm{CH}_{2}\right), 1176\left(\mathrm{OCH}_{3}\right), 769$ (disubstituted phenyl); ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.9\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.45(\mathrm{~m}$,
$\left.2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\right), 3.0\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{N}=\mathrm{C}-\mathrm{CH}_{2}-\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.3$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$), 6.9 ($\mathrm{s}, 1 \mathrm{H}$, thiophene proton), $7.0(\mathrm{~d}, 2 \mathrm{H}, 2 \times \mathrm{CH}$, $\mathrm{J}=8.5$), $7.4(\mathrm{~d}, 2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{J}=8.5) ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 22.78,22.81,22.95$, $33.21,55.38,110.46,113.99,115.92$, 120.15, 129.67, 130.50, 134.40, 147.18, 154.34, 155.34, 159.50; ms: m/z (M) $=$ $\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ON}_{2} \mathrm{~S}\right)^{+}=310(100 \%)$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}$, 69.65; H, 5.84; N, 9.02. Found: C, 69.73; H, 5.87; N, 9.32.

4-Amino-3-(4-methoxyphenyl)-6,7,8,9-tetrahydro-5H-cyclo-hepta[b]thieno[3,2-e]pyridine ($\mathbf{5 c} / \mathbf{n}=\mathbf{2}$). Yield 95%; orange needles; $\mathrm{mp} 195^{\circ} \mathrm{C}$ (dichloromethane/methanol 9:1); ir: 3462 and $3363\left(\mathrm{NH}_{2}\right), 2919$ and $2842\left(\mathrm{CH}_{2}\right)_{5}, 1624\left(\mathrm{NH}_{2}\right), 1434$ $\left(\mathrm{CH}_{2}\right)_{5}, 1170\left(\mathrm{OCH}_{3}\right), 775$ (disubstituted phenyl); ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 1.85$ $\left(\mathrm{m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 2.6\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\right), 3.1\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{N}=\mathrm{C}-\mathrm{CH}_{2}-\right.$), $3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.4\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.9(\mathrm{~s}, 1 \mathrm{H}$, thiophene proton), $7.0(\mathrm{~d}, 2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{J}=8.5), 7,4(\mathrm{~d}, 2 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{J}=8.5) ;{ }^{13} \mathrm{C}$ nmr: $\delta 25.24,26.60,27.12,32.15,39.04,55.37,113.91,116.00$, 120.12, 129.62, 130.62, 130.63, 134.70, 146.24, 153.99, 159.50, 161.88; ms: m/z $(\mathrm{M})^{+}=\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ON}_{2} \mathrm{~S}\right)^{+}=324$ (100\%). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 70.34 ; \mathrm{H}, 6.21$; N, 8.63. Found: C, 70.25; H, 6.34; N, 8.79.

4-Amino-3-(4-chlorophenyl)-6,7-dihydro-5H-cyclopenta[b]-thieno[3,2-e] pyridine ($\mathbf{5 d} \mathbf{d} \mathbf{n}=\mathbf{0}$). Yield $\mathbf{9 5 \%}$; orange needles; mp $176^{\circ} \mathrm{C}$ (dichloromethane/methanol 9:1); ir: 3473 and 3308 $\left(\mathrm{NH}_{2}\right), 2946$ and $2840\left(\mathrm{CH}_{2}\right)_{3}, 1635\left(\mathrm{NH}_{2}\right), 1455\left(\mathrm{CH}_{2}\right)_{3}, 818$ (Cl), 761 (disubstituted phenyl); ${ }^{1} \mathrm{H} \mathrm{nmr}$: $\delta 2.28\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 2.75\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\right), 3.1\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{N}=\mathrm{C}-\mathrm{CH}_{2}-\right.$), $4.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.9(\mathrm{~s}, 1 \mathrm{H}$, thiophene proton), $7.4(\mathrm{~m}, 4 \mathrm{H}$, $4 \times \mathrm{CH}$); ${ }^{13} \mathrm{C}$ nmr: $\delta 22.87,26.79,34.39,115.73,115.91,120.25$, 128.72, 130.57, 133.42, 134.15, 135.88, 145.04, 164.42, 166.31; $\mathrm{ms}: \mathrm{m} / \mathrm{z}(\mathrm{M})^{+}=\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{SCl}\right)^{+}=300(100 \%)$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{~S}: \mathrm{C}, 63.89 ; \mathrm{H}, 4.36$; N, 9.31. Found: C, 63.87 ; H, 4.56; N, 9.52.

4-Amino-3-(4-chlorophenyl)-5,6,7,8-tetrahydrothieno[2,3-b]quinoline ($\mathbf{5 d} / \mathbf{n}=\mathbf{1}$). Yield 83%; orange needles; mp $179^{\circ} \mathrm{C}$ (dichloromethane/methanol 9:1); ir: 3488 and $3340\left(\mathrm{NH}_{2}\right)$, 2935 and $2859\left(\mathrm{CH}_{2}\right), 1627\left(\mathrm{NH}_{2}\right), 1447\left(\mathrm{CH}_{2}\right)_{4}, 831(\mathrm{Cl}), 766$ (disubstituted phenyl); ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.9\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$), 2.45 (m, $\left.2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\right), 3.0\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{N}=\mathrm{C}-\mathrm{CH}_{2}-\right), 4.2\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.9$ (s, 1 H , thiophene proton), $7.4(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{CH}) ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta$ 22.56, 22.72, 22.93, 33.18, 110.64, 115.43, 120.39, 128.74, $130.59,133.40,134.17,135.86,146.91,155.58,158.41$; ms: $\mathrm{m} / \mathrm{z} \quad(\mathrm{M})^{+}=\left(\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{SCl}\right)^{+}=314$ (100\%). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{~S}: \mathrm{C}, 64.85 ; \mathrm{H}, 4.80 ; \mathrm{N}, 8.90$. Found: C, 64.81; H, 4.76; N, 9.02.

4-Amino-3-(4-chlorophenyl)-6,7,8,9-tetrahydro-5H-cyclo-hepta[b]thieno[3,2-e]pyridine ($\mathbf{5 d} / \mathbf{n}=\mathbf{2}$). Yield 86%; orange needles; $\mathrm{mp} 175^{\circ} \mathrm{C}$ (dichloromethane/methanol 9:1); ir: 3489 and $3382\left(\mathrm{NH}_{2}\right), 2913$ and $2846\left(\mathrm{CH}_{2}\right)_{5}, 1622\left(\mathrm{NH}_{2}\right), 1455$ $\left(\mathrm{CH}_{2}\right)_{5}, 824(\mathrm{Cl}), 755$ (disubstituted phenyl). ${ }^{1} \mathrm{H}$ nmr: $\delta 1.8$ (m, $6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$), $2.65\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\right), 3.1\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{N}=\mathrm{C}-\mathrm{CH}_{2}-\right)$, $4.3\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.95(\mathrm{~s}, 1 \mathrm{H}$, thiophene proton), $7.4(\mathrm{~m}, 4 \mathrm{H}$, $4 \times \mathrm{CH})$; ${ }^{13} \mathrm{C}$ nmr: $\delta 25.18,26.48,26.99,32.05,39.05,116.13$, $116.23,120.78,128.61,130.65,133.69,134.11,135.76,145.91$, 159.77, 162.09; ms: $\mathrm{m} / \mathrm{z}(\mathrm{M})^{+}=\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{SCl}\right)^{+}=328$ (100%). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{~S}: \mathrm{C}, 65.74 ; \mathrm{H}, 5.21$; N, 10.78. Found: C, 65.81; H, 5.32; N, 10.65.

Acknowledgements Authors want to thank the University Paul Verlaine-METZ (France) and the University of Luxembourg (Grand-Duchy of Luxembourg) for supporting this work; Mrs. Véronique Poddig from the University Paul Verlaine-METZ for recording the NMR spectra and Dr Serge Schneider, Dr Brice Appenzeller and Dr Marc Schuman from
the Laboratory of Toxicology of the Laboratoire National de Santé (Luxembourg) for recording the IR and MS spectra.

REFERENCES

[1] Francotte, P.; Grandorge, E.; Boverie,S.; De Tullio, P.; Pirotte, B. Curr. Med. Chem. 2004, 11, 1757
[2] Chaki, H.; Yamabe, H.; Sugano, M.; Morita, S.; Bessho, T.; Tabata, R.; Saito, K-I.; Egawa, M.; Tobe, A.; Morinaka, Y.; Bioorg. Med. Chem. 1995, 5, 1495
[3] Thomae, D.; Kirsch, G.; Seck, P. Synthesis 2007, 1027.
[4] (a) Gewald, K. Z. Chem. 1961, 11, 349. (b) Gewald, K. Z. Chem. 1962, 2, 305. (c) Gewald, K.; Schinke, E.; Böttcher, H. Chem.

Ber. 1966, 99, 94.
[5] Tabarini, O.; Ceccetti, V.; Temperani, A.; Filipponi, E.; Lamperti, M.G.; Fravolini, A.; Bioorgg. Med. Chem. 2001, 9, 2921
[6] Marco, J.L.; De Los Rios, C.; Garcia, A;. Villarroya, M.; Carreiras, C.; Martins, C.; Eleutério, A.; Morreale, A.; Orozco, M.; Luque, F.J. ; Bioorg. Med. Chem. 2004, 12, 2199.
[7] Ellman, G.L.; Courtney, K.D; Andres, V.; Feather-Stone, R.M.; Biochem. Pharmacol. 1961, 7, 88.
[8] (a) Rahman K.M.M.; Chowdhury, A.Z.M.; Shaifullah; Bhuiyan, M.M.H.; Hossain, M.K.; Uddin, M.K. Pak. J. Sci. Ind. Res.; 2003, 46, 95. (b) Bhuiyan, M.M.H.; Rahman, K.M.M.; Hossain, M. K.; Fakruddin, M.; Pak. J. Sci. Ind. Res. 2004, 47, 256.
[9] Barnes, D.M.; Haight, A.R.; Hameury, T.; McLaughlin, M.A.; Mei, J.; Tedrow, J.S.; Toma, J.D.R. Tetrahedron 2006, 62, 11311.

